锂电池的工作原理
工作原理
当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。
一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。
对电池来说,正常使用就是放电的过程。锂电池放电需要注意几点:
第一,放电电流不能过大,过大的电流导致电池内部发热,有可能会造成永久性的损害。在手机上,这个倒是没有问题的,可以不考虑。
第二,绝对不能过放电!锂电池最怕过放电,一旦放电电压低于2.7V,将可能导致电池报废。好在手机电池内部都已经装了保护电路,电压还没低到损坏电池的程度,保护电路就会起作用,停止放电。从图上可以看出,电池放电电流越大,放电容量越小,电压下降更快。
作用机理
锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示,而负极用插入或脱插表示)。在充放电过程中,锂离子在正、负极之间往返嵌入/脱嵌和插入/脱插,被形象地称为“摇椅电池”。
化学解析
概述
和所有化学电池一样,锂离子电池也由三个部分组成:正极、负极和电解质。电极材料都是锂离子可以嵌入(插入)/脱嵌(脱插)的。
正极
正极材料:如上文所述,可选的正极材料很多,主流产品多采用锂铁磷酸盐。不同的正极材料对照:
|
正极材料 |
平均输出电压 |
能量密度 |
|
LiCoO? |
3.7 V |
140 mAh/g |
|
Li2MnO3 |
3.7 V |
100 mAh/g |
|
LiFePO4 |
3.2 V |
130 mAh/g |
|
Li2FePO?F |
3.6 V |
115 mAh/g |
正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。充电时:LiFePO?→ Li1-xFePO?+ xLi+ xe放电时:Li1-xFePO?+ xLi+ xe→LiFePO?
负极
负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。负极反应:放电时锂离子脱插,充电时锂离子插入。充电时:xLi+ xe+6C→LixC6放电时:LixC6→ xLi+ xe+6C
大体分为以下几种:
第一种是碳负极材料:实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。[5]
第二种是锡基负极材料:锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。没有商业化产品。
第三种是含锂过渡金属氮化物负极材料,没有商业化产品。
第四种是合金类负极材料:包括锡基合金、硅基合金、锗基合金、铝基合金、锑基合金、镁基合金和其它合金,没有商业化产品。
第五种是纳米级负极材料:纳米碳管、纳米合金材料。
第六种纳米材料是纳米氧化物材料:目前合肥翔正化学科技有限公司根据2009年锂电池新能源行业的市场发展最新动向,诸多公司已经开始使用纳米氧化钛和纳米氧化硅添加在以前传统的石墨,锡氧化物,纳米碳管里面,极大的提高锂电池的冲放电量和充放电次数。
电解质溶液
溶质:常采用锂盐,如高氯酸锂(LiClO4)、六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF?)。溶剂:由于电池的工作电压远高于水的分解电压,因此锂离子电池常采用有机溶剂,如乙醚、乙烯碳酸酯、丙烯碳酸酯、二乙基碳酸酯等。有机溶剂常常在充电时破坏石墨的结构,导致其剥脱,并在其表面形成固体电解质膜(solid electrolyte interphase,SEI)导致电极钝化。有机溶剂还带来易燃、易爆等安全性问题。
电池涂碳铝箔(导电涂层)
涂碳铝箔在锂离子电池应用中的优势
1、抑制电池极化,减少热效应,提高倍率性能;
2、降低电池内阻,并明显降低了循环过程的动态内阻增幅;
3、提高一致性,增加电池的循环寿命;
4、提高活性物质与集流体的粘附力,降低极片制造成本;
5、保护集流体不被电解液腐蚀;
6、改善磷酸铁锂、钛酸锂材料的加工性能。
导电涂层
利用功能涂层对电池导电基材进行表面处理是一项突破性的技术创新,覆碳铝箔/铜箔就是将分散好的纳米导电石墨和碳包覆粒,均匀、细腻地涂覆在铝箔/铜箔上。它能提供极佳的静态导电性能,收集活性物质的微电流,从而可以大幅度降低正/负极材料和集流之间的接触电阻,并能提高两者之间的附着能力,可减少粘结剂的使用量,进而使电池的整体性能产生显著的提升。涂层分水性(水剂体系)和油性(有机溶剂体系)两种类型。
涂碳铝箔/铜箔的性能优势
1.显著提高电池组使用一致性,大幅降低电池组成本。如:
明显降低电芯动态内阻增幅;
提高电池组的压差一致性;
延长电池组寿命;
大幅降低电池组成本。
2.提高活性材料和集流体的粘接附着力,降低极片制造成本。如:
改善使用水性体系的正极材料和集电极的附着力;
改善纳米级或亚微米级的正极材料和集电极的附着力;
改善钛酸锂或其他高容量负极材料和集电极的附着力;
提高极片制成合格率,降低极片制造成本。
3.减小极化,提高倍率和克容量,提升电池性能。如:
部分降低活性材料中粘接剂的比例,提高克容量;
改善活性物质和集流体之间的电接触;
减少极化,提高功率性能。
4.保护集流体,延长电池使用寿命。如:
防止集流极腐蚀、氧化;
提高集流极表面张力,增强集流极的易涂覆性能;
可替代成本较高的蚀刻箔或用更薄的箔材替代原有的标准箔材。
制作工艺
锂电池的正极材料有钴酸锂LiCoO2、三元材料Ni+Mn+Co、锰酸锂LiMn2O4加导电剂和粘合剂,涂在铝箔上形成正极,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,至今比较先进的负极层状石墨颗粒已采用纳米碳。
1、制浆:用专门的溶剂和粘结剂分别与粉末状的正负极活性物质混合,经搅拌均匀后,制成浆状的正负极物质。
2、涂膜:通过自动涂布机将正负极浆料分别均匀地涂覆在金属箔表面,经自动烘干后自动剪切制成正负极极片。
3、装配:按正极片—隔膜—负极片—隔膜自上而下的顺序经卷绕注入电解液、封口、正负极耳焊接等工艺过程,即完成电池的装配过程,制成成品电池。
4、化成:将成品电池放置测试柜进行充放电测试,筛选出合格的成品电池,待出厂。


