诺德股份

热分析技术基本原理

   2017-06-28 锂电世界小王子0
核心提示:热分析技术的基础是当物质的物理状态和化学状态发生变化时(如升华、氧化、聚合、固化、硫化、脱水、结晶、熔融、晶格改变或发生化学反应时),往往伴随着热力学性质(如热焓、比热容、热导率等)的变化,因此可通过测定其热力学性能的变化,来了解物质物理或化学变化过程。现在把根据物质的温度变化所引起的性能变化(如热能量、质量、尺寸、结构等)来确定状态变化的方法统称为热分析。
  锂电世界热分析技术的基础是当物质的物理状态和化学状态发生变化时(如升华、氧化、聚合、固化、硫化、脱水、结晶、熔融、晶格改变或发生化学反应时),往往伴随着热力学性质(如热焓、比热容、热导率等)的变化,因此可通过测定其热力学性能的变化,来了解物质物理或化学变化过程。现在把根据物质的温度变化所引起的性能变化(如热能量、质量、尺寸、结构等)来确定状态变化的方法统称为热分析。

    传统的热分析技术有热重分析法(TGA)、差热分析法(DTA)和差示扫描量热分析法(DSC)。

    (1)热重分析法(TGA)

    许多物质在加热或冷却过程中往往伴有质量变化,其变化的大小及出现的温度与物质的化学组成和结构密切相关。因此,利用加热或冷却过程中物质质量变化的特点,可以区别和鉴定不同的物质。这种方法就叫热重分析法。利用热重分析法可以研究物质的热稳定性、热分解温度、分解反应温度等。如果同时将分解产生的挥发组分输入气相色谱仪,测定分解产物的组成,则可以研究物质的热降解机理。把试样的质量作为时间或温度的函数纪录分析,得到的曲线称为热重曲线。热重曲线的纵轴方向表示试样质量的变化,横轴表示时间或温度。

    利月热重分析法可以研究物质的热稳定性、热分解温度、分解反应温度等。如果同时将分解产生的挥发组分输入气相色谱仪,测定分解产物的组成,则可以研究物质的热降解机理。记录TG曲线对温度或时间的一阶导数,也就是质量的变化率与温度或时间的函数关系为DTG曲线,可以进一步得到质量变化速率等更多信息。从失重曲线上各点的斜率可以计算在各温度下的失重速度(d W/dt),从而可以计算分解速度常数(K)及反应活化能。

    (2)差热分析法

    差热分析法( DTA)是测量与材料内部热转变相关的温度、热流的关系,研究样品在可控温度程序下的热效应。通过差热分析仪,能够快速而准确地分析样品的熔点、相转变温度等各种特征温度。应用范围非常广,特别是材料的研发、性能检测与质量控制。

    在程序控温条件下,测量试样与参比的基准物质之间的温度差与环境温度的函数关系。当炉温等速上升,经一定时间后,样品和参比物的受热达到稳定态,即二者以同样速度升温。如果试样与参比物温度相同,AT=O,那么它们热电偶产生的热电势也相同。由于反向连接,所以产生的热电势大小相等方向相反,正好抵消,记录仪上没有信号;如果样品升温过程有热效应发生,而参比物是无热效应的,这样必煞出现温差,AT≠O,记录仪上的信号指示了AT的大小。


 
本文导航:
  • (1) 热分析技术基本原理2
举报收藏 0打赏 0评论 0
 
更多>同类锂电技术
  • sjzlwlb
    加关注0
  • 没有留下签名~~
推荐图文
推荐锂电技术
点击排行
锂电视界二维码
网站首页  |  关于我们  |  联系方式  |  用户协议  |  隐私政策  |  版权声明  |  历年杂志  |  会员服务  |  广告服务  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报