锂电池性能与温度相关性的基础实验研究
《西安交通大学学报》[ISSN:0253-987X/CN:61-1069/T]
- 卷:
- 52
- 期数:
- 2018年第05期
- 页码:
- 133-141
- 栏目:
- 出版日期:
- 2018-05-10
- Title:
-
Experimental Research on the Correlation of LithiumIon Battery
Performance with Temperature Condition
- 作者:
- 张立玉1; 路昭2; 韦立川2; 3; 漆鹏程4; 孟祥兆1; 康三娜1; 赵民1; 金立文1
-
1.西安交通大学人居环境与建筑工程学院,710049,西安;2.西安交通大学能源与动力工程学院,710049,西安;
3.深圳市英维克科技股份有限公司,518000,广东深圳;4.江苏白雪电器股份有限公司,215500,江苏常熟
- Author(s):
-
ZHANG Liyu1; LU Zhao2; WEI Lichuan2; 3; QI Pengcheng4; MENG Xiangzhao1;
KANG Sanna1; ZHAO Min1; JIN Liwen1 -
1. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China; 2. School of Energy
and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; 3. Shenzhen Envicool Technology Co. Ltd.,
Shenzhen, Guangdong 518000, China; 4. Jiangsu Baixue Electric Appliances Co. Ltd., Changshu, Jiangsu 215500, China
- Keywords:
-
lithiumion battery; thermal condition; discharge rate; charging and
discharging performance
- 分类号:
- TM912
- DOI:
- 10.7652/xjtuxb201805019
- 摘要:
- 为综合分析影响电池性能的热环境因素,利用恒温油浴工况、近似绝热工况分别模拟有无热管理措施的动力电池组工作热环境,对松下18650锂电池进行了充放电性能与温度相关性的基础测试,研究了电池工作热条件、电池状态及放电倍率对其充放电性能的影响。研究结果表明:无论在何种热条件下,电池充电容量总是小于上次放电容量;当充电温度低于20℃时,电池充电容量随着充电温度的降低迅速衰减,若前一次放电倍率为0.5C、充电温度从20℃降至-10℃时,充电容量衰减12%;较高的放电温度能有效抵消电池大倍率放电引起的容量损失,当电池在40℃环境中以2C倍率电流放电时,其容量衰减仅为3.7%;当电池放电倍率较小,且工作温度高于30℃时,温度对电池放电性能的影响逐渐减小;环境温度较低时,电池放电容量随温度降低迅速衰减,当电池放电温度为-10℃时,其2C倍率放电容量衰减高达50%。本研究期望对高效、可靠及合理的电池热管理系统的设计提供理论依据。
- Abstract:
- 备注/Memo:
- 陕西省科技统筹创新工程计划项目(2015KTCO01-99);陕西省重点科技创新团队资助项目(2016KCT-16);中国建筑股份有限公司技术中心课题(TC-2016A-092)
To achieve a comprehensive understanding of the thermal effects on battery performance, the charging and discharging performances of Panasonic 18650 lithium battery were tested under constant temperature and approximate adiabatic conditions to simulate the battery operating conditions with and without thermal management strategies, respectively. The tested items include battery operating temperature, battery state and discharge rate. It was found that the charge capacity of the battery is always smaller than the previous discharge capacity regardless of thermal conditions, and when the operating temperature is below 20℃, the charge capacity decreases dramatically, e.g., it decays 12% within the charging temperature range from 20℃ to -10℃ in contrast to the previous discharge rate of 0.5C. High operating temperature could offset the battery discharging capacity loss due to the large discharge rate. The battery discharge capacity loses only 3.7% when it discharges at the rate of 2C at 40℃. The study shows that the battery discharging performance decreases gradually when the operating temperature rises up to 30℃ and that the battery discharge capacity decreases rapidly with the temperature drop. When the operating temperature is -10℃, the 2C discharge capacity fade can be as much as 50%. It is expected that the above results could provide a support for the design of an efficient, reliable and reasonable battery thermal management system.








参考文献/REFERENCES:
[1]CAMPANARI S, MANZOLINI G, DE LA LGLESIA F G. Energy analysis of electric vehicles using batteries or fuel cells through welltowheel driving cycle simulations [J]. Journal of Power Sources, 2009, 186(2): 464477.
[2]GRECO A, JIANG X, CAO D. An investigation of lithiumion battery thermal management using paraffin/porousgraphitematrix composite [J]. Journal of Power Sources, 2015, 278: 5068.
[3]AN Z, JIA L, LI X, et al. Experimental investigation on lithiumion battery thermal management based on flow boiling in minichannel [J]. Applied Thermal Engineering, 2017, 117: 534543.
[4]RAO Z, WANG S. A review of power battery thermal energy management [J]. Renewable & Sustainable Energy Reviews, 2011, 15(9): 45544571.
[5]RITCHIE A, HOWARD W. Recent developments and likely advances in lithiumion batteries [J]. Journal of Power Sources, 2006, 162(2): 809812.
[6]ETACHERI V, MAROM R, RAN E, et al. Challenges in the development of advanced liion batteries: a review [J]. Energy & Environmental Science, 2011, 4(9): 32433262.
[7]GRECO A, CAO D, JIANG X, et al. A theoretical and computational study of lithiumion battery thermal management for electric vehicles using heat pipes [J]. Journal of Power Sources, 2014, 257(3): 344355.
[8]RAMADASS P, HARAN B, WHITE R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures: part IICapacity fade analysis [J]. Journal of Power Sources, 2002, 112(2): 614620.
[9]李平, 安富强, 张剑波, 等. 电动汽车用锂离子电池的温度敏感性研究综述 [J]. 汽车安全与节能学报, 2014, 5(3): 224237.
LI Ping, AN Fuqiang, ZHANG Jianbo, et al. Temperature sensitivity of lithiumion battery: a review [J]. Journal of Automotive Safety & Energy, 2014, 5(3): 224237.
[10]LU L, HAN X, LI J, et al. A review on the key issues for lithiumion battery management in electric vehicles [J]. Journal of Power Sources, 2013, 226(3): 272288.
[11]LEI Z, ZHANG C, LI J, et al. A study on the lowtemperature performance of lithiumion battery for electric vehicles [J]. Automotive Engineering, 2013, 35(10): 927933.
[12]肖飞, 谢世坤, 张庭芳, 等. 低温环境对动力锂电池放电特性影响 [J]. 井冈山大学学报(自然科学版), 2012(6): 6164.
XIAO Fei, XIE Shikun, ZHANG Tingfang, et al. The discharge performance of lithiumion battery at lowtemperature environment [J]. Journal of Jinggangshan University (Natural Science), 2012(6): 6164.
[13]杨阳, 汤桃峰, 秦大同, 等. 电动汽车锂离子动力电池充放电性能试验分析 [J]. 世界科技研究与发展, 2012, 34(5): 735739.
YANG Yang, TANG Taofeng, QIN Datong et al. Test research of electric vehicle of lithiumion battery chargedischarge performance [J]. World Sci Tech R&D, 2012, 34(5): 735739.
[14]PESARAN A, VLAHINOS A, BURCH S. Thermal performance of EV and HEV battery modules and packs [C/OL]∥14th International Electric Vehicle Symposium, Orlando, Florida, December 1517, 1997. [20171012]. https: ∥wenkubaiducom/view/bc7f1f1aa8114431b90dd871html.
[15]PESARAN A. Battery thermal models for hybrid vehicle simulations [J]. Journal of Power Sources, 2002, 110(2): 377382.
[16]蔡飞龙, 许思传, 常国峰. 纯电动汽车用锂离子电池热管理综述 [J]. 电源技术, 2012, 36(9): 14101413.
CAI Feilong, XU Sichuan, CHANG Guofeng. Thermal management techniques of lithiumion battery pack for electric vehicles [J]. Chinese Journal of Power Sources, 2012, 36(9): 14101413.
[17]LU Z, MENG X Z, WEI L C, et al. Thermal management of denselypacked EV battery with forced air cooling strategies [J]. Energy Procedia, 2016, 88: 682688.
[18]JIN L W, LEE P S, KONG X X, et al. Ultrathin minichannel LCP for EV battery thermal management [J]. Applied Energy, 2014, 113(1): 17861794.
[19]任宝福, 贾力, 张竹茜, 等. 大容量锂离子动力电池热特性的实验研究 [J]. 工程热物理学报, 2013, 34(11): 21202123.
REN Baofu, JIA Li, ZHANG Zhuqian, et al. The experimental study on thermal characteristics of the discharge process in high capacity liion power batteries [J]. Journal of Engineering Thermophysics, 2013, 34(11): 21202123.
[20]JI Y, WANG C Y. Heating strategies for Liion batteries operated from subzero temperatures [J]. Electrochimica Acta, 2013, 107(3): 664674.
[21]ZHANG J, GE H, LI Z, et al. Internal heating of lithiumion batteries using alternating current based on the heat generation model in frequency domain [J]. Journal of Power Sources, 2015, 273: 10301037.
[22]雷治国, 张承宁, 董玉刚, 等. 电动汽车用锂离子电池低温性能和加热方法 [J]. 北京工业大学学报, 2013, 39(9): 13991404.
LEI Zhiguo, ZHANG Chengning, DONG Yugang, et al. Lowtemperature performance and heating method of lithium battery in electric vehicles [J]. Journal of Beijing University of Technology, 2013, 39(9): 13991404.
[23]JAGUEMONT J, BOULON L, DUBE Y. A comprehensive review of lithiumion batteries used in hybrid and electric vehicles at cold temperatures [J]. Applied Energy, 2016, 164: 99114.


